
DIFFERENTIAL OPERATORS WITH NILPOTENT 
p-CURVATURE 

Introduction. Let K be a field of characteristic p ,  let D = dldX 
and let 

be an ordinary differential operation with coefficients in K(X) the field 
of rational functions in one variable with coefficients in K. 

We say that L has nilpotent p-curvature if DP' E K(X)[D]L for 
some p € N. An elementary account of such operators has been pro- 
vided by Honda [Ho] and in particular he proved (cf. 1.5 below) a local 
form of Katz7s theorem [Ka] which implies that theorem. 

1.2. If L has nilpotent p-curvature then L is fuchsian and the 
exponents lie in Fp. 

(In other words for p algebraic over K, the order of pole of a, at 
p is bounded by j (1 s j < n) and hence for s E N we have 

where x,,,, the indicia1 polynomial for L at P, is of degree n and splits 
in 1F,. Furthermore a similar condition holds at infinity.) 

The Riemann data of L consists of a tabulation of the singular 
points together with a list of the exponents at each singular point. We 
shall use the expression, restricted Riemann data, to indicate that the 
exponents are specified (together of course with the number of singular 
points) but that the singular points themselves are not necessarily spec- 
ified (except for w and possibly two other points). 

Manuscript received 7 March 1988.  
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Letting m + 1 be the number of singular points, we may insist that 
the restricted Riemann data satisfy the fuchs condition, 

1.3. The sum of the exponents equals 

Precisely as in the characteristic zero case we construct moduli for 
fuchsian differential operators with given restricted Riemann data. Spe- 
cifically let y = (y , ,  . . . ,y,), let { y l , . . . ,y,, a)be the set of singular 
points. Put 

Then 

where each A, is a polynomial in X. 

(1.4.1) deg A, 6 j(m - 1)  

and for 1 6 j < n 

A, = A , ,  + +B, 

with 
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and here 

Both the polynomials A,,o and the coefficients p, are completely 
determined by the Riemann data. (If we write the monic indicia1 poly- 
nomial at yi in the form 

n n - j - 1  

2 fj(s)X,'l) where f,(s) = (s - i), 
,=o r = O  

fo = 1so that Xj" E IFp, then by the Lagrange interpolation formula 

rn  

(1.4.7) Aj,o = 2 Xj"+'(yi)l-'+(x)l(x - y,) E Fp[y, XI.) 
r = l  

Thus L is parametrized by y and by the 

accessory parameters v = (. . . ,v,,~,. . .). 
We observe that the moduli space is the open subset of m - 2 + 

vn(m) affine space defined by the condition that y, f y, for i f j. 
It is well known (cf 0.6.3 below) that L is nilpotent if and only if 

DPn E K(X)[D]L and hence L,,, being nilpotent and having given re- 
stricted Riemann data is equivalent to the condition that (y, v) lies in 
an algebraic subset VN of the moduli space. 

We show 

1.5. If (y, v) E VN then v is integral over [Fp[y] 

1.6. VNis a complete intersection if n = 2. 
In Section 0 we give a characterization of nilpotent p-curvature in 

terms of generalizations of Honda's log functions. This is used to elim- 
inate the restriction that n < p .  For the applications it could be elimi- 
nated by means of the remark following Lemma 1.1. 

In Section 6 we give the relation between the present theory and 
the classical invariants associated with Lame's equation. 

Global nilpotence is discussed in Section 7. Our results are frag- 
mentary. 
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We have been helped by conversations with S. Sperber and N. 
Katz. We have benefitted from G. Christol's preliminary account of our 
work in writing Sections 2, 7. We have also benefitted from the advice 
of S. Kochen in writing Section 7. Our Section 5 is based on methods 
of F. Baldassarri. B. Chiarellotto's proof of Proposition 0.2 has been 
helpful. 

0. Generalized logarithms in characteristic p. It follows from the 
definitions that if L is a nilpotent differential operator then the solutions 
of Ly = 0 in any abstract differential field, lie among the solutions of 
DP'y = 0 for p sufficiently large (in fact p 2 order L is sufficient). The 
object of this section is to give for s 2 0 the explicit construction of a 
differential field in which ~ ~ " + l y  = 0 has "sufficiently many solutions," 
i.e. in which D"" becomes trivial in the sense of 0.5 below. The case 
of s = 0 is trivial, the case s = 1has been treated by Honda. Familiarity 
with the work of Honda will not be assumed. 

Let K be a field of characteristic p. Let Bo = K(X) be a field which 
is inseparable (of degree p) over Ro = K(XP). Thus the space ~ ~ , ~ ~ ,of 
derivations of 9o(with values in Bo) which are trivial on RO is a one- 
dimensional 9, space [Z-S, Chapter 11, Section 17, Theorem 411. Let 
D be a nontrivial element of this space whose pth power annihilates Bo. 
Then Ro = Ker (D, ?Po). 

Note. We insist neither that X be transcendental over K nor that 
D = dldX.  

The ring 3 = 90[D] is independent of the choice of D. 

Definition. L E % has nilpotent p-curvature if for some I*, 2 0, 
DP' E %L. 

Remark. It will follow from 0.6.1 that nilpotence is independent 
of the choice of D. 

Let zl,  z,, . . . be an infinite sequence of elements algebraically 
independent over K ( X ) .  Setting zo = X, B-, = K we consider the 
tower of fields 4-, C Bo C 9, defined by setting 9, = Bs-l(z,) for 
s 2 0. We extend the differential field structure of %o successively to 
?PI, B,, . . . etc. by setting 
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We note that if 5 E 9,, D, = 5D E %S,,,g then D, may be extended to 
9 = lim 9, so as to satisfy the same system of relations. Thus the 
construction of 9, may depend upon the choice of z, but not upon the 
choice of D. 

Proof (after Bruno Chiarellotto). Both assertions are trivial for 
s = 0. We use induction on s. Let s 2 1. If (0.1), is false then there 
exists b E such that z, E b + Ker(D, 9,). We write b as a ratio 
of elements of Ro[zo, zl,  . . . , z,-,I and after multiplying numerator and 
denominator by the (p - 1)" power of the latter we obtain b = PlQ 
where P E R,[zo, zl, . . . ,2,- ,I, Q E Ro[z%,. . . ,z&,], Q # 0. Thus 

We write 

where v runs through S = [F, x Ns-' and A,, B, E 0,. Thus since 
Dz, # 0, 

and so for fixed u E Ns-' 
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the sum being over all i E (0, 1, . . . , s - I), v E S such that 

v, = puj if j c i. 

This shows that v, = 0 in [Fp and hence Q = 0, a contradiction. 

Proof of 0.2. Let 5 E Ker(D, 9,). Certainly F; is a ratio of elements 
of 9,-,[z,] and hence there exists q E 9, such that F;qP E 9s-l[z,]. 
Certainly D(5qP) = 0 and we may assume that 5 E 9,-,[z,]. Thus we 
may write 

We assert 

(0.2.1.2) a, = 0 if p does not divide j. 

Indeed differentiating 5, using the fact that z: E 9,-,and that z, is 
transcendental over 9,-,, we have 

(0.2.2) a,' + ( j  + l)a,+,zl = 0 0 S j S m 

where a,,, = 0. 
Let j E [0, m - 11be maximal such that a: f 0. Then ( j  + l ) ~ , , ~  

# 0 while a,,, E Ker(D, 9,-,). This shows that z, E -aj/(] + l ) ~ , + ~  
+ Ker (D, 9,) contrary to (0.1). This demonstrates 0.2.1.1 and so by 
equation 0.2.2, assertion 0.2.1.2 also holds. Thus for 0 G j c m, 

by induction on s and the assertion now follows from property 0.2.1.2. 
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Proof. The assertion is obvious for s = 0. We introduce a further 
assertion. For p E [0, p - 11 

Trivially (0.3),-I implies (0.3.1),, while (0.3.1),,, for p = 0, 1, . . . , 
p - 1 implies assertion (0.3),. We now use induction on p. Let y E 
9,-,then by Leibnitz 

By (0.3)s-1, D'y = 0 for j 3 p h n d  so we may assume j G pL 1, i.e. 
i 2 pps + 1 in the sum on the right hand side. We observe that by 
(O.~ .~)S ,&-I ,  

This completes the proof. 
Let cRs = K(xP, . . . ,z:). 
By (0.2) 0, = Ker(D, P). 

Proof. The chain cRs C Cs(X) C cRs(X, z,) C . . C - cR,(x, z,, . . . , 
z,) = 9, consists of s + 1successive extensions each of degree p. 

0.5. Let H be a differential field L E H[D] and let Ho = Ker(D, 
H) .  By the theory of the wronskian, if L # 0 then 

(0.5.1) dim, Ker(L, H )  G order L. 

If the maximum value is attained, i.e. if equality holds then we say 
that L becomes trivial in H.  

This is far stronger than the assertion that L is a product of elements 
of H[D] of order unity. 

PROPOSITION.If a product L = L, o . . .  o L, of elements of H[D] 
becomes trivial in H then each L, becomes trivial in H. (Note: The con- 
verse is false.) 
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Proof. The L, constitute a set of endomorphisms of H as Ho space. 
Let n, = order L,, n = C n, = order L. Then n = dimHo Ker(L, H) 
-s XE1 dim,, Ker(L,, H )  a E n, = n.  Thus we have equality which 
shows that for each i, n, = dimH, Ker(L,. H). 

We observe that by (0.3), (0.4), D ~ " "becomes trivial in 9,, 
Let = ?Fi;.,[D]. 

0.6.1. L E 3 has nilpotent p-curvature if and only if L becomes 
trivial in 9, for some s. 

0.6.1.1. Nilpotence is independent of the choice of D E 99,,no. 

0.6.2. A product L = L, o . . . o L,, of elements of 3has nilpotent 
p-curvature if and only if each L, has nilpotent p-curvature. 

0.6.3. If n is the order of L,  an operator with nilpotent p-curvature 
then L is a product of not more than n elements of each of which 
becomes trivial in 9 0 ,  DP" E 3 L  and L becomes trivial in 9, if p" 2 n. 

Proof. If L has nilpotent p-curvature then there exists p such that 
DPF E 3 L  and hence choosing ps+' p p  we have DP"" = AL,  A E 
3.Since DP"" becomes trivial in 9,,  it follows from 0.5 that L also 
becomes trivial in 9,. 

For the converse part of 0.6.1, since 3is euclidean, DP"' = AL + 
B where A ,  B E 3, order B < order L. Clearly Ker(B, 9 , )  3 
Ker(L, 9,) ,  and hence if B f 0, and if L becomes trivial in 9, then 
order B 2 dimnq Ker(B, 4,) 2 dimny Ker(L, 9,) = order L a contra- 
diction which shows that B = 0. 

For the proof of 0.6.1.1 we again let L E % have nilpotent 
p-curvature relative to D. Then for some s, L becomes trivial in 9, 
relative to D. How does this property depend upon D? Only in that we 
must check the dimension of Ker(L, 9,) as vector space over Ker(D, 
9,). Thus if D, = <D (6 E 8,, < # 0) is some other nontrivial element 
of %i;,,t,, then it is enough to check that for Dg extended to 9,,  Ker(D,, 
9,) coincides with Ker (D , 9s). 

For 0.6.2, if L has nilpotent p-curvature then by 0.6.1 L becomes 
trivial in 9, for some s and hence by 0.5 each L, becomes trivial in 9s 
and so again by 0.6.1 each L, has nilpotent p-curvature. 
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For the converse part of 0.6.2 we may assume that m = 2. Thus 
there exist A, ,  A, E %, pl, p2 E N such that 

It follows that 

which shows that L,L, also has nilpotent p-curvature. 
For 0.6.3, let L have nilpotent p-curvature. The assertion is trivial 

if L is of order zero. Hence we may assume n 3 1. Let p be minimal 
such that DPwE % L .  Certainly p 2 1.We assert that 1 e %DP + % L ,  
indeed otherwise 

Since DP lies in the center of 3,multiplying on the left by D P ( b l )shows 
that 

contradicting the minimality of p. We conclude that there exists L ,  E 
3,order L1 3 1such that 

This shows that 

The second relation shows that L1 becomes trivial in Bo.The first 
relation together with 0.6.2 shows that the operator A, also has nilpotent 
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p-curvature. Applying induction on the order of L we conclude that L 
has a decomposition 

into operators which become trivial in B,, i.e. DP = A,L, for 1 G j G 
m. It follows from the calculation 0.6.2.2 that DPmE %L. Certainly 
m < n. Thus DP" E %L as asserted and hence by 0.6.1 L becomes trivial 
in B,+, for each s such that p"l s pn. 

1. Structure of VN. Let R be a valuation ring with quotient field 
9 (of characteristic p) which is a differential field with operator D. Let 
K be the kernel of D in 9. 

LEMMA1.1. Let 2 be a monic element of %[Dl of order n. We 
assume that 

(i) D is stable on R.  
(ii)  The natural map of K x  into the value group of B is surjective. 

(iii)  The kernel of 2 in 9 is of dimension n as K space, i.e. 2 
becomes trivial in B in the sense of 0.5. 

We conclude that 2 is a monic element of R[D] .  

Proof. Let u Z 0 be an element of the kernel of 2 in 3. By 
hypothesis we may choose a E K such that au is a unit in R. It follows 
that 

where z = u'iu = (au)'iau E R and 2,is monic element of $[Dl of 
order n - 1. By (0.5) the operator 2, becomes trivial in 9. 

By induction on the order, 2, is a rnonic element of R [ D ]and so 
the lemma follows from 1.1. (i). 

Remark. The lemma remains valid if (iii) is replaced by (iii') 2 
is the composition of elements which become trivial in 9 .  

1.2. COROLLARY.Let B,, D ,  a, be as in Section 0. Let L be a 
monic element of %,[Dl which has nilpotent p-curvature. Let Ro be a 
valuation ring of B, with the properties 
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(i) D is stable o n  R,. 
(ii)  The natural mapping of Clg  into the value group of 9, is sur- 

jective. 

Then L is a monic element of Ro[D]. 

Proof. This is an immediate consequence of 0.6.2 and the pre- 
ceding remark. 

1.3. COROLLARY.Let X be transcendental over the field K of char- 
acteristicp. Let 9, = K(X), D = dldX,  L be a monic element of % = 
$,[Dl which has nilpotent p-curvature. Let R be any valuation ring of K 
and let R, be its extension to 9,by the gauss norm relative to X.  Then 
L is a monic element of R,[D]. 

Proof. Certainly the value group of 9, coincides with the image 
of K in that group. Stability of Ro under D is clear. The assertion follows 
from 1.2. 

1.4. COROLLARY.Let (y,v )  lie in the algebraic set, VNdefined over 
1F,by the nilpotence of the operator L of 1.4 with given restricted Riemann 
data. Then v is integral over Fp[y]. (Hence in particular v is algebraic 
over 1F,(y), and the dimension of VNis at most m - 2.) 

Proof. Let R be any valuation ring of ffp(y, v )  = K. Let Ro be its 
extension to 2F0 = K(X) by the gauss norm relative to X. By 1.3 A,/+' 
lies in Ro (1 < j < n ) .  If R contains [Fp[y] then + = IIE, (X - yi) E Ro 
and so A, E R,. Further Bj is the quotient (with remainder A,,) in the 
division of A, by +, a monic element with coefficients in R and hence 
Bj lies in R,. Thus v,,e E R for each R which contains Fp[y]. The assertion 
follows from a well known theorem in valuation theory (Z.-S. Chapter 
6, Section 4, Theorem 61. 

The Lam6 and Brioschi invariants of Section 6 are illustrations of 
this corollary. 

1.5. COROLLARY. Let L be as in 1.3. Then the singular- (Honda) . 
ities of L are fuchsian and the exponents lie in [F,. 

Proof. Let K be replaced by K(t) = K with t ,  X algebraically 
independent over K ,  Dt = 0. Let y = Xlt and let R be the valuation 
of K trivial on K such that It1 < 1. 
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Let L = Dn + AIDn- '  + .. .  + An E K ( X ) [ D ] ,  D = dldX. Then 
relative to dldy = t D ,  the operator may be written 

We extend the valuation of K to the valuation R, of ~ ( y )by the gauss 
norm relative to y. By 1.3 

If X = 0 is a pole of A, of order p, then in K ( ( X ) ) we have 

and so 

so that 

which shows that j 2 p, as asserted. 
We now follow Honda's argument to show that the exponents of 

L lie in [F,. By 0.6.3 L = L, o L2 where L1, L, are monic, L1 is nilpotent, 
L2 is of order 1 and has a solution in K ( X ) .  It follows that x,,, the 
indicia1 polynomial at zero of L2, is of first degree with root in FP and 
that x,(s) = xLI (s- l)xL,(s).The assertion now follows by induction 
on n .  

1.6. We generalize the preceding result. 

COROLLARY. Let X be transcendental over the field k of character- 
istic p. Let 9,= k ( ( X ) ) ,  D = dldX and let 
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be an element of 9 0 [ D ]  with nilpotent p-curvature. Then L satisfies the 
Fuchs condition at zero, X'A, has no pole at X = 0 and the exponents 
at zero lie in f fp .  

Proof. Let t be transcendental over k ( ( X ) ) .We put k = k ( t ) ,  a 
field with valuation trivial on k and with ord t = 1.Let 3 = {C ajX' E 
k [ [ x ] ]I inf, ord(tlal) > -m). Thus 3 is the ring of functions analytic 
and bounded on the disk 1x1> 1 ti. The obvious norm 

m 

ord 2 a,Xj = Inf ord a,tJ 
j=o i 

of 3 may be used to define a valuation of the quotient field 9,.We 
extend the derivation dldX to $o by insisting that dtldX = 0. Trivially 
t(d1dX) is stable on the valuation ring of %, and the value group of so 
coincides with the natural image of K(t)" C Ker ( t ( d / d X ) ,5,).Once 
again we have 

and so by 1.2 t J A jlies in the valuation ring of so.If we write 

then 

0 S ord t lAj  = j -

which again demonstrates the Fuchs condition. The exponents lie in ff,, 
by the argument of 1.5. 

2. Second order equations. Part I. 

2.1. We recall generalities for nthorder equations in characteristic 
P. 

Let B be a differential field with D as derivation such that D P  
annihilates 9. Let G E A,($),the ring of n- x n matrices with coeffi- 
cients in 9. We consider the system 
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We define recursively Go = In, GI = G, G2, . . . by 

2.1.2. PROPOSITION. In a suitable differential extension field 55 , Gp 
is equivalent to an element of &,,(Ker(D, 55)). 

Proof. We choose 55 so as to contain the coefficients of a solution 
matrix U of 2.1.1. Thus DG,U = Gs+lU. We put C = U-'GpU. We 
assert DC = 0. 

and the assertion follows from 

2.1.3. COROLLARY. The characteristic polynomial of Gp has coef- 
ficients in 9 annihilated by D. 

Of course nilpotence of p-curvature for 2.1.1 is equivalent to the 
nilpotence of G,, i.e. to the condition 

By a routine argument if w = det U, i.e. w is a wronskian of (2.1.1) 
then 

(2.1.4) DPw = (Tr GP)w. 

2.2. L e t B b e a s i n 2 . 1 , e  = D2 + uD + P E R  = %[D].For 
s 2 0 we define h,, k, E 9 by the condition 

D" = hsD + k, mod Re 

The p-curvature matrix Gp of 4 represents the action of DP on (u, 
u') where u is an abstract solution of eu = 0. Thus 
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By 2.1.4 Tr G, = 0 if and only if DPw = 0 where w is the wronskian 
of 4. Thus if u is the logarithmic derivative of an element of 9 then Tr 
G, = 0 and 4 has nilpotent p-curvature if and only if det Gp = 0. 

2.2.2. LEMMA. Let p # 2. 
If u is the logarithmic derivative of a rational function then 4 is 

nilpotent if and only if A = 0 where 

Proof. The recursion relation 

together with the relation 

shows that 

and so hp+ l ,  k,+ l ,  k, can all be computed in terms of h,. The formula 
for A is simply the calculation of det Gp = k,h,+l - h,kp+l. By 2.1.3 
A E Ker D. 

2.2.3. COROLLARY.Let w be the wronskian of 4, then t2(whp) = 
0 where 

4, = D3 + 3uD2 + (u' + 4p + 2u2)D + 2p' + 4up 

is the symmetric square of 4. 

Proof. Forp # 2, this is a direct consequence of Christol's identity, 
[Chr2]. 
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which is most easily checked by first considering the case a = 0. 
If p = 2 then hp = -0 and &(whp) = 0 by a direct calculation 

which is simplified by the observation that D(a' + a') = 0. 

2.3. We consider differential polynomials in a ,  p ,  i.e. elements of 
[Fp[u,a ' ,  arr ,  . . . , p ,  p r  , prr,  . . .]. A monomial 

has weight and degree defined by 

degree M = C. m, 

weight M = 2 el(l + j )  + 2 mj(2 + j ) .  

PROPOSITION h, is a differential polynomial in a ,  p which is 2.3.1. 
isobaric of weight s  - 1. 

k, is isobaric of weight s. 

- 1
(2.3.2) deg (hp - (- p )  ( p - ' ) I 2 )  < '-

2 .  

Proof. The first assertion follows by induction from 2.2.2.1. For 
2.3.2 we use induction on s for s odd. 

3. Second order equations. Part 11. We consider equation 0.2.1 
in the case of n = 2,  i.e. 

where A,,o, Az,o are polynomials of degree strictly bounded by m and 
deg B2G m - 2. Let K be the field containing the singularities and the 
coefficients of these polynomials. Letting 
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denote the Riemann data, then 

from which the well known condition 

(3.1.2) m - 1 = 2 (e, + e,') + em+ eL 
, = 1  

easily follows. We may write 

where v = (vo, vl, . . . , v,-~) are the accessary parameters of Klein. 
Thus K = ffp(-yl,. . . , -ym, v). We define a,, P, E K ( X )  by the condition 

(3.1.4) Ds = a,D + p, mod K(X)[D]L. 

Thus a,, P, in a special case of (h,, k,) of 2.2. 

3.2. LEMMA. 

3.2.1. The order of pole of a, (resp: P,) at y,is bounded by s -
1 (resp: s). 
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3.2.2. The order of pole of or,at yi is strictly less than (resp: exactly 
equal to) p - 1 if ei # -e: (resp: ei = el). 

3.2.3. The order of zero of asat is not less than s - 1. The 
order of zero of ps at w is not less than s. 

3.2.4. The order of zero of a, at w is strictly greater than (resp: 
exactly equal to) p - 1if em # e: (resp: e, = e:). 

Proof. We simplify the exposition by putting yl = 0. The calcu- 
lation at w is similar. We write 

and use the recursion formula 2.2.2.1 to deduce 

where 

Assertion 3.2.1 follows by induction using (ao,6,) = (0 , l )  which shows 
that (u,, v,) = (0, 1). 

It is clear that 

while by a trivial calculation 

If el # el then both factors must occur in the right hand side of 3.2.7 
and hence u, = 0. 
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If el = el then let 

Since 

MH = H(e l  
0 

l )  
el 

= H(e l l  + N ) ,  

we have 

where 6 is the (p  - 1)" elementary symmetric function in {el -
s } ~ = ~ , ~i.e. in all the elements of (F,. Since,..., 

we have S = -1and so if el = e:, 

This completes the proof of 3.2.2. 

4. Nilpotent p-curvature for n = 2. Under the hypotheses of 3,  
with ei, e: E [F, for i = 1, 2 ,  . . . , m, w, the condition for nilpotence 
is given by 2.2.2 i fp Z 2. We rewrite this condition putting H = @P-'ol,, 
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and replacing A by its product with @2p. We obtain 

Thus A lies in Ker D and its vanishing defines the variety of nilpotence 
V ,  if p # 2. 

For p = 2 the condition for nilpotence is by 2.2.1 

Det Gz = b2 + (ab)' = 0.  

In the following lemma, v = (vo,  v, ,  . . . , v,,-,) refers to (3.1.3). 

4.1. LEMMA. Let p # 2. Then 

(4.1.1) A E Fp[v, Y ,  X P ]  

(4.1.2) A E * F P ( ~ ,?)[XI 

(4.1.3) deg, A < p(2m - 2)  

and hence 

(4.1.4) A @ p A o ( ~ ,= Y ,  X P )  

where 

(4.1.5) Ao E Fp[v7 y ,  X J  

(4.1.6) deg, A, G m - 3. 

Proof. By 2.3.1 a, is isobaric of weight p - 1 as differential 
polynomial in a and b.  Equations 4.0.1, 4.0.2 show that 
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It follows that H = $*-'or, E lFp[v,y ,  XI. Furthermore b - (1/2)a1-
(1/4)a2is also isobaric of weight two and hence 

Assertion 4.1.1 is now clear. 
We assert that A = 0 at X = y, for 1 < i < m .  

Case I. ei f e:. 
By 3.2.2 H = 0 at X = y, and so H$ has a zero of order two at 

y,. It follows that (H$)'  and H$(H$)" both vanish at y,. The assertion 
then follows in this case from 4.1.9. 

Case 11. e, = e:. 
In this case H does not vanish but H$(H$)" does vanish at X = 

y,. Furthermore we may replace (H$)I2by H2$I2.Thus it is enough to 
show that 

vanishes at X = y,. By 4.0.1, 4.0.2 

The first term clearly vanishes at X = y, and by 3.1.1.1, 3.1.1.2 the 
bracket at X = y, is the same as e R  - (1/4)(ei+ e:)2 = 0 since ei = 
e:. This completes the treatment of Case I1 and hence of 4.1.2. 

To verify 4.1.3 we must again consider two cases. 

CaseI.  e, # e:. 
By 3.2.4 degxH G m ( p  - 1) - p while by 3.1.1 b ,  a ' ,  a2 all vanish 

at X = m with order at least two. It follows easily from 4.0.3 that 
degxA G 2 deg H + 2 deg $ - 2 which confirms 4.1.3 in this case. 
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Case 11. e, = d.  
In this case by 3.2.4 degxH = ( p  - l)(m - 1). For this discussion 

we renormalize H so as to be rnonic. Thus degx H+ = p(m - 1) + 1, 
and so the coefficient of X2p("-'I in - (114)(H+)" + (112)H+(H+)" is 
- (114). Since 

we easily compute the coefficient of X2p(m-') in H2+'(b - (112)at -
(1/4)a2) to be e,eL + (1/2)(e, + eL + 1) - (114)(e, + eL + 1)' = 
e,eL + (114) - (1/4)(e, + eL)'. The coefficient of X2p(m-') in A is thus 
e,eL - (114)(e, + eL)' = 0 since e, = eL. This completes the discussion 
of Case I1 and hence of 4.1.3. 

Assertions 4.1.4-4.1.6 now follow from the fact that + is monic as 
polynomial in X and that A lies in the kernel of D. 

4.2.1. VN is a complete intersection defined by the vanishing of 
m - 2 polynomials 

deg, g, s p - 1. 

4.2.2. For fixed y, VN is a finite set with cardinality (counting 
multiplicities) pm-'. (Finiteness also follows from 1.4.) 

4.2.3. For fixed y, the cardinality of Vo, the variety of zero p-
curvature, is at most ((p - 1)12)"-' (resp: I), if p f. 2 (resp: p = 2). 
Each point of Vo occurs in VNwith multiplicity at least two (if p # 2). 

Proof. Case1 .p  f 2. 
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Let 

By 2.3.2 the leading form of a, relative to v is + - ( ~ ( v ,X ) /+) (P- ' )~ .  
Thus degv H = ( p  - 1)/2and so v appears in ((H*)", in H+(H@)"and 
in H2+'(- (1/2)a1 - (1/4)a2)at most to the powerp - 1. But the leading 
form of b relative to v is ~ ( v ,X)/+.  Thus the leading form of A relative 
to v is xP+,. Thus by 4.1 the leading form of A, relative to v is ~ ( v p ,  
X ) .  Thus we may write 

where g, E IFp[?, v ] ,deg, g, <p - 1. This completes the proof of 4.2.1 
and 4.2.2 follows by setting KO = IFp(y), R = Ko[v],% = C;"=i3(v:, -
g,)R and observing that the ring Rl% has exactly pm-2elements. 

The variety V ois defined by the vanishing of H as polynomial in 
X .  The leading form of a, shows that Vois defined by elements of Ko[v], 
(h,,  . . . , he) of degree bounded by (p  - 1)/2. On the other hand Vo  
being a subset of V Nmust be finite. We may reorder the hi so that 
{h,, . . . ,hm-2)defines an algebraic set of dimension zero which contains 
Vo.The upper bound on card Vois now clear. By 4.0.3 each zero of H 
provides a double zero of A. Thus each point of Voappears at least twice 
in computing the cardinality of V N .  

Case 11. p = 2.  
We may assume that all e,, el E F2 and that 3.1.2 is satisfied. Thus  

certainly satisfies the condition a' + a2 = 0. To make the second con- 
dition of 4.0.4 explicit we write B2 = pXm-' + X ( V ,  X )  where x is as 
in Case I and p = erne;.The second condition may be written 
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It is clear that ( A l , o ~ ) '  is a polynomial in X 2  whose degree in X is bounded 
by 2(m - 3). It follows from 3.1.1.1,3.1.1.2 that the right side of (4.3.1) 
is a polynomial and by 3.1.1.3 the leading term of Al,o is (1 + e, + 
eL)Xm-'. If p # 0 then p + 1 + e, + e: = 0. It follows that the right 
side of 4.3.1 is also a polynomial in X 2  whose degree in X i s  bounded 
by 2(m - 3).Thus 4.2.1 holds in the case of p = 2. 

Since D2 -- -b - a D  mod L, zero p-curvature implies a = b = 
0. This completes the treatment of the case p = 2. 

5. Lame equation (characteristic zero). [Po, W.W., BA-I]. The 
object of this section is to recall some classical constructions associated 
with this differential equation. In the next section this will be related 
to the varieties V, and Vo in characteristic p .  The operator is 

where 

and el, e,, e3 are distinct. Here B is the accessory parameter and the 
Riemann data is 

We restrict our attention to the case in which 2n E Z.Since L, is 
invariant under n -+ -1 - n, we may assume that n 2 -112. 
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5.1. n E iZ.  
We may assume n 2 0. The symmetric square of L, is given by  

The following result is well known [W. W., Po]. 

LEMMA. (Hermite). There exists 0, E (1/2),,(2n)!)-'2[112, e, B, XI 
of degree n separately in X and in B and rnonic in X such that (L,),O,, = 
0. 

Proof. (We refer to 0, as the Hermite polynomial.) The coeffi- 
cient of Dj in (L,), is a polynomial in T = X - e, of degree j (0 s j s 
3) and the coefficient of D3 is divisible by 7.Hence for arbitrary s we 
have 

where 

We observe that 

(5.1.3.3) +2(s) = -+2( -1 - s). 
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5.1.4. Remark. The verification of 5.1.2 is facilitated by observing 
that the exponents of e2 of (L,), are 0 ,  112, 1 and these must be the 
zeros of s + + o ( ~  - 2) .  The exponents at are -n ,  112, n + 1 and 
these must be the zeros of s + + 2 ( - ~ ) .  This fixes +,, +, up to factors 
independent of s. These factors may be computed from the values of 
C)~(O), ~ ) ~ ( 0 )  which are given by 

From 5.1.4.1 we deduce 1) = 0 , while by differentiating 5.1.2 
with respect to B ,  

This shows that 

where is independent of B and a quadratic in s. Its determination 
can be carried out by computing +,(s) for s = 0 ,  1, 2. 

We continue with the proof of the lemma. We use the vanishing 
of +0( -2 ) ,  I ) ,  +o( - 1) to conclude that (L,)2 is stable on poly- 
nomials in T and in particular on the span (1 ,  T ,  . . . , 7"). The matrix 
of (L,), on this space is the lower triangular ( n  + 1) x ( n  + 1) matrix 
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whose diagonal elements are +2(0), +2(1), . . . , +2(n)which are all 
nonzero except for +,(n) = 0.  Thus the rank is n and so up to a constant 
factor there exists exactly one polynomial of degree n ,  

which lies in the kernel. Here 

and computing the c, recursively involves division by +2(n - I), 
+z(n - 2) ,  . . . , +,(0). The lemma follows by computing the product 
of these factors. 

5.2. COROLLARY.In the notation of the preceding lemma, let 

an element of ((1/2),(2n)!)-22[1/2, e ,  B]  of degree 2n + 1 relative to B. 
Then is a solution of L, if and only if A,(e, B )  = 0.  

We refer to A, as the Lame' invariant. 

Proof. We use the formula of Fuchs [Ba-Dw (0.6)].Let y,, yz be 
solutions of L,  such that y lyz  = 0,. Let w = yly;  - yzyI and let wo= 
l / f i a particular solution of the wronskian equation of L,. Then (ig- 
noring (5.2.1)) 

Trivially A, is independent of x and hence may be computed by setting 
X = e2. By use of 0,(e2) = c,, 0A(e2) = c,- we deduce formula (5.2.1) 
for A,. Trivially the vanishing of w is the criterion for 0, being the square 
of a solution of L,. 
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5.2.3. Remark. It is known [W.W., 23.411 that A, as polynomial 
in B with coefficients in C(e) has no repeated roots. 

5.2.4. It has been shown by Baldassarri [BAl] that if A,(B) = 0 
then the monodromy group L,,, cannot be finite. In an otherwise im- 
portant article (cf. 7.3.2 below) [Ch, Thm. 7.21 the Chudnovsky's assert 
without proof that this holds in any case without any hypothesis on 
A,(B). A counter example has been given by Baldassarri [Ba2] n = 1, 
B = 0, g2 = 0 whose monodromy group is dihedral of order 6 being 
the weak pullback by E(x) = 1 - 4x3/g, of the hypergeometric equation 
whose exponent differences at 0, 1, are 112, 113, 112. 

This counter example also disproved our own conjecture [Dwl] 
that L,,, is globally nilpotent only if A,(B) = 0. 

5.2.5. The example of Baldassarri may also be investigated by 
writing L,,~,in the form 

so that solutions at X = 0 involve a four term recursion formula but if 
B = 0 and either g2 or g3 vanish then the recursion formula involves 
only two terms and the equation may be reduced to the hypergeometric 
equation and finite monodromy determined from the Schwarz list. 

5.3. We now consider the case in which n is a half integer n = 
e  - 112, e E N. 

We again put T = X - e2 and consider 

as operator on K((T)) where K = Q(e, B). We rewrite 5.1.2 in the form 

5.3.2. PROPOSITION. 

5.3.2.1. @ is stable on K[[T]] and on T-*K[[T-']]. 
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5.3.2.2. If we write 

then 

5.3.2.3. Q is stable on the K span of 1, T, . . . , Te - 1 

Proof. Stability on K[[T]] (resp: T-~K[[-T]]) follows from 
+,( -312) = 0 (resp: +2( -112) = 0). 

Assertion 5.3.2.2 follows from 5.1.3.1-5.1.3.2. 
Assertion 5.3.2.3 follows from +,(t - 112) = +,(n) = 0. This 

completes the proof of the proposition. 
'The matrix M of the action of @ on the span of 1, T . . . , is 

We define the Brioschi invariant 

(5.3.3)  h,(e, B) = det M. 

It is clear that h E 2[1/2, e, B], deg,h = t .  

5.3.4.1. The algebraic set h,(e, B) = 0 is invariant under per- 
mutation of (el, e2, e3). 
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5.3.4.2.  The monodromy group of L, is finite if and only if h,(e, 
B)  = 0.  

Proof. In the following sketch we omit explanations of rings of 
definition and of reduction modulo p. 

We restrict our attention to primes p 3 2 t  + 1.  The vanishing of 
&(-2), & ( - I ) ,  shows that ( L J 2  is stable on the span of 1 ,~ $ ~ ( - 1 )  
7 ,  . . . , T P - I  and hence t - (p+1) /2(Ln)2  T ( P + ~ ) ' ~is stable on the span of 

7 - ( ~ - 1 ) 1 27 - (~+1) /2 ,  , . . . ,  Reducing mod p we conclude that 7- '  0 

is stable on this space with matrix which is lower triangular and with 
+,(I12 + j), - (p  + 1)/2 < j s ( p  - 3)/2 as the diagonal elements. 
These diagonal elements are zero for precisely 3 values of j ,  j  = 
- e  - I ,  - 1 ,  e - 1.  

The restriction of 7 - Q  to this space has the followingp x p matrix 
in which asterisks indicate nonzero elements lying on the diagonal. Here 
M is the image of M under reflection about the skew diagonal of Mz 
perpendicular to the main one. 

(Note that M and M are not lower triangular but there is no contradiction 
as the main diagonal of M is offset from that of M 2 ) . Multiplying by a 
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row reducing matrix on the left we may remove all elements lying below 
the asterisks in the upper left (including those not shown in M) and 
multiplying on the right by a column reducing matrix we may remove 
all entries to the left of the asterisks in the lower right (including those 
not shown in M). 

We conclude that the rank is p - 1 unless det M vanishes, i.e. 
h,(B, e) modp vanishes, in which case the rank isp - 3. This is precisely 
the condition then that (L,)z mod p has three rational solutions and this 
then is the condition that L, mod p have zero p-curvature. This last 
condition is invariant under permutation of el, e,, e3 and so the algebraic 
sets h,(e,, e2, e3, B) = 0, h,(ez, el, e3, B) = 0 have the same reduction 
mod p for all p 3 2t + 1.We conclude that the two algebraic sets must 
coincide in characteristic zero. This completes the proof of 5.3.4.1. 

If L, has finite monodromy then by the trivial part of the Groth- 
endieck conjecture, L, has zero p-curvature for almost all p and hence 
by the preceding analysis h,(e, B) = 0 for almost allp which shows that 
h,(e, B) = 0 in characteristic zero. This completes the proof of 5.3.4.2 
in one direction. 

Conversely if h,(e, B) = 0 then by 5.3.2.2 and the definition of M, 
(L,), has a nontrivial algebraic solution u2 = zz.\/= where z2 is a 
polynomial of degree t - 1. By 5.3.4.1 we may interchange el and e, 
and obtain a solution ul = zlv'-, where z1 is again a polynomial. 
Clearly u,, U, are linearly independent over K. Let vl, vz be independent 
solutions of L, in some differential extension field. Then 

where Q,, Q2 are quadratic forms with constant coefficients. Thus v,, 
v2 are algebraic over C(ul, u,) for some constant field C. The finiteness 
of monodromy is now clear. 

5.3.5. COROLLARY.If p 3 24 + 1and if L, mod p is well defined 
then the reduction has zero p-curvature if and only if h,(e, B) =0 modulo 
P. 

5.3.6. We are indebted to F. Baldassarri for the methods used in 
this section. Previous treatments of L, with n a half integer (Bal, Po, 



780 BERNARD DWORK 

Cr] have all been based upon the Halphen transform, a process which 
is avoided here. 

We show that our h,, coincides with the polynomial P ,  appearing 
in the proof of [Bal,  Theorem 2.61, (which in turn coincides with [Po, 
p. 164, equation 211. Crawford has shown [Cr] by Sturms theorem that 
for e,, e2 real, the polynomial P,, has e distinct roots for B. It follows 
that P, has no multiple factors as monic polynomial in B with coefficients 
in @[e,, e2]. Our assertion now follows from the fact that h, and P, have 
the same degree as polynomial in B and define the same algebraic set. 

6. Lame equation (characteristicp # 2). Let n E Fp. We consider 
L, given by 5.0.1 but now with f in characteristic p. We choose E E 
[0, ( p  - 1)/2] such that the image of E in Fp coincides with either n or 
-1 - n. We define 

p - 1  - 1A = ----- - - - =  -1 - E mod p.2 2 

We use the results of Section 5 to compute the apassociated with, 
L, by 3.1.4. 

In particular we define 0,(B, e ,  X) ,  A,(B, E), hfi(B, e) by reducing 
mod p the corresponding formulae of Section 5. The main point here 
is that p does not divide (1/2),(2E)! in 2[1/2]. 

We choose wo= f(P-1)12,a solution in characteristic p of the wron- 
skian equation of L,. By (2.2.3) 

where h, E Fp[B, el defines the same algebraic set as he and has the same 
degree in B. 

Proof. If ap = 0 then L, has zero p-curvature and since p 2 
2(ii + 112) + 1we conclude from 5.3.5 that h,(B, e) = 0 and so the 
assertion is trivial in this case. 
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defIf a, # 0 then +, = wool,and 0, are nontrivial solutions of (L,.,),. 

They cannot be linearly independent over the kernel of D as otherwise 
by an argument used in the proof of 5.3.4.2, would have zero p- 
curvature contrary to hypothesis. Thus +,/€I, lies in the kernel of D. By 
3.2.2 the order of pole of a, at e, is bounded by p - 2 and so that of +, is bounded by (p  - 2) - ( p  - 1)/2 < (p  - 1)/2. The exponents 
at e, show the order of pole is congruent mod p to either 0, p - 1, or 
(p - 1)/2. Thus +, has no pole at e, and hence is a polynomial in X. It 
follows that I$, E Fp[B, e, XI.  

The degrees of 0, and of +, are both bounded by p - 1 since by 
5.1 degx 0, = ii while by 3.2.3 deg, +, (3/2)(p - 1) - ( p  - 1) a 
(p - 1)/2. This shows that +,/0, is independent of X. Since 0, is monic 
in X, the quotient is the leading coefficient of +,: an element of Fp[B, el 
which we designate as h, and hence the algebraic set defined by h,, 
coincides with the set defined by h,. 

The leading form (relative to B) of +,, is by 2.3.2 equal to 
-+ f(P-I)12(B/f)(p--1)12= +. B(p-1)'2 and so the degree in B of h, is 
(p  - 1)/2 - degs 0,. (Alternatively in the notation of 5.1.7 h,c, = 
+n/,=o a polynomial in B of degree (p - 1)/2). We conclude that deg, 
h, = (p  - 1)/2 - ii = ri + 112 = deg, hi,. This completes the proof 
of the lemma. 

Using 6.2 it is easy to check that 

where L, = D2 + aD + b. Thus the invariant A of 2.2.2 may be written 
(after dropping the trivial factor fP) 

in terms of the Lam6 invariant (5.2.2). Here we have 

deg, A = p 
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Thus for fixed e, the variety of nilpotence, A = 0, hasp points of which 
ii + 112 involve zero p-curvature and are counted twice. 

7. Global nilpotence. We consider the family of nthorder differ- 
ential equations in characteristic zero with given restricted Riemann 
data. For application to questions of global nilpotence we may [Ka] 
insist that the singularities are all fuchsian and that the exponents lie in 
Q. Letting m + 1be the number of singular points, one at infinity, the 
description of 1.4 holds again and we may use (y, v) to designate an 
element of the moduli space in characteristic zero. 

Let 'Vglobalbe the set of all (y, v) algebraic over Q such that for 
almost all primes p of Q(y, v), the reduction mod p of L,,, has nilpotent 
p-curvature. 

Let V be an algebraic subset (defined over an algebraic number 
field, K) of the moduli space. We consider three types of such subsets. 

Type I. We say that V is of type I if each algebraic point of V lies 
in Yo. 

Type 11. We say that V is of type I1 if there exists a finite set S 
of primes of K such that for each point (y, v) of V algebraic over K and 
for each prime p of K(y, v) excluding 

(a) primes above S 
(b) primes at which (y, v) is not integral 
(c) primes at which the reduction of y does not consist'of m distinct 

elements 

we may conclude that the reduction modulo p of L,,, has nilpotent p- 
curvature. 

Type 111. We say that V is of type I11 if there exists a finite set, 
S of primes of K, such that for each p not in S the reduced variety V, 
lies in V,, the algebraic set associated with the reduction mod p of the 
given restricted Riemann data. 

In 7.5.2 we give an example in which 'Y,,,,,, is an algebraic set. We 
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do not know that this is true in general. For algebraic sets of type 1 we 
have no effective method for determining the set of "bad" primes for 
each point. We believe that types 11 and I11 are the same. 

If (y, v) is a generic point of an irreducible subvariety of the moduli 
space of type 111 then v is algebraic over K(y) since for almost all primes 

of K the dimension of V is the same as that of V, the mod p reduction 
of V. The assertion then follows from Corollary 1.4. 

That corollary as well as the examples of the Lam6 and Brioschi 
invariants of Section 5 suggest that for type 111, v is integral over Z[N.-', 
y] for suitable N E B. This is certainly the case if K[y] is a unique 
factorization domain. Let 0 = Aoze + . ., + A, be the irreducible 
polynomial satisfied by one of the components of v over Z[y]. It is enough 
to show A,IAo E K[y] for 16 j 6 4.Let y,, . . . ,y, be a transcendence 
basis of K(y) over K. Each finite prime p of K may be extended to 
K (y,, . . . ,y,) by the gauss norm and then extended in a finite number 
of ways to the galois closure of K(y, v) over K(y,, . . . ,7,). For almost 
all such extensions the reduction, (7,V ) ,  lies in VNand hence by Cor- 
ollary 1.4 the reduction of z and of its conjugates are integral over [F,[y]. 
Thus E %l~,[y]. Thus the variety An = 0 mod p lies in the variety 
A, = 0 mod p for almost all p and so the same holds in characteristic 
zero. By the null stellensatz A; E K[y]Ao for some v. By unique fac- 
torization each irreducible factor of A,, divides A, in K[y]. 

We are indebted to Christ01 [Chr2] for bringing this type of result 
to our attention. 

7.2. An example of a type I11 subvariety of the moduli space is 
given in the case n = 2 by the problem of determining all L,,, with 
given restricted Riemann data and a fixed finite projective monodromy 
group. It follows from Klein (cf. [Bu-Dw]) that the set of all such 
(y, v) constitutes an algebraic set defined over Q. 

The Brioschi invariant 5.3.5 is monic in B with coefficients in 
2[112, el. The vanishing of this invariant is equivalent to the assertion 
that the Lam6 equation L,,e,,(with fixed n E 112 + Z) have the Vierer 
group as projective monodromy graup. 

7.3. A very important example of a type I11 variety is provided 
by the variation of cohomology of an algebraic variety depending upon 
two parameters r ,  A.  Viewing periods as functions of l7 with A as a 
parameter, we obtain a system of linear differential equations para- 
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metrized by A which is of type 111. An elementary description of such 
a situation may be found in [Dwl, Section 2.4.11. 

7.4. For n = 2 we formulate a conjecture concerning V,,,,,,. 

CONJECTURE.Let K be an algebraic number field and let L be an 
element of K(t)[dldt] of second order which is globally nilpotent. Then 
L has an algebraic wronskian and either 

7.4.1. L has a solution which is the radical of a rational function. 

7.4.2. L is obtained from a hypergeometric equation with rational 
exponents 

by an algebraic transformation X = +(t) of the independent variable and 
a transformation 

of the dependent variable where A,  B are algebraic functions. 

7.5. This conjecture is known in three cases. 

7.5.1. If the monodromy group of L is finite, the result follows 
from Klein's theorem [Ba-Dw]. 

Note. In this case we may take A = 0 in 7.2.2.1 and B is needed 
only to adjust the wronskian. However this cannot hold in general. If 
y and z are contiguous ,F, with infinite monodromy groups, then relation 
7.4.4.1 will hold but A need not be zero. 

7.5.2. For the Lam6 equation Ln,,, (5.0.1)with n E Z the con- 
jecture is known. Trivially L,,, is globally nilpotent if and only if either 
A,(B) = 0 or L,,, has globally zero p-curvature. The first case is covered 
by 7.4.1. In the second case (for n E Z)the Grothendieck conjecture 
has been proven by the Chudnovsky's [Ch] and hence the monodromy 
group is finite. Thus we reduce to 7.5.1. 
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7.5.3. Apery has given three examples of globally nilpotent second 
order differential equations 

These equations arose in connection with the proofs of irrationality ((2) 
and ((3). The global nilpotence of these operators follows from explicit 
formulae (given by Apery) for solutions of L,, L2 and of L3, the sym- 
metric square of L,, lying in Z[[X]] together with the fact that the 
remaining solutions of L3 at X = 0 involved log X and log2 X. These 
explicit formulae led to integral formulae for the solutions which re- 
vealed their cohomological meaning [Dw1,2], [B-S] ,[Be]. These articles 
show that all three satisfy the conjecture and are related to 2F,(5/12, 
1/12> 1, 111). 
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